

Jahresbericht ARA Höfe, Freienbach

2022

Inhaltsverzeichnis

Inha	ltsverze	eichnis	2
1	Zusan	nmenfassung	3
	1.1	Abwasser	3
	1.2	Klärschlamm	. 4
	1.3	Weitere Bemerkungen	4
2	Perso	nelles	6
	2.1	Mitarbeitende	. 6
	2.2	Ausbildungen	6
3	Abwa	sserreinigung	8
	3.1	Gesamtbeurteilung	. 8
	3.2	Belastungen ARA	9
4	Grafik	en Einleitbedingungen	10
	4.1.1	Chemischer Sauerstoffbedarf (CSB tot.)	10
	4.1.2	Biochemischer Sauerstoffbedarf in 5 Tagen (BSB5)	11
	4.1.3	Organischer Kohlenstoff (DOC)	12
	4.1.4	Phosphor gesamt (P tot.)	13
	4.1.5	Gesamte ungelöste Stoffe (GUS)	14
	4.1.6	Nitrit (NO2-N)	14
	4.1.7	Ammonium (NH4-N)	15
	4.1.8	Stickstoff gesamt (N tot.)	16
	4.2	Abwassermengen / Abwassertemperaturen	17
5	Biolog	ie WB	19
6	Schla	mmbehandlung	20
7	Gasha	aushalt	21
0		iebilanz	22
8	8.1	Energie ARA Total	
	8.2		
		Energie UV's	
9	Entso	rgung	
	9.1	Entsorgung Klärschlamm	
	9.2	Entsorgung Diverses	24
10	Fachb	egriffe	25

1 Zusammenfassung

Die Abwasserreinigungsanlage (ARA) Höfe ist aktuell auf 45'000 Einwohnerwerte (EW) und einen maximalen Zufluss von 490 l/s ausgelegt (inkl. Rückläufe). Die EW setzen sich aus den angeschlossenen Einwohnern und Einwohnergleichwerten aus Industrie und Gewerbe zusammen. Am 1. Januar 2022 waren 29'957 Einwohner an die ARA Höfe angeschlossen. Das Abwasser aus den Gemeinden Feusisberg, Freienbach und Wollerau sowie aus dem Ortsteil Bennau des Bezirks Einsiedeln fliessen der ARA Höfe zu. Der Fremdwasseranteil über das gesamte Verbandsgebiet von knapp 40% wird von einzelnen Einzugsgebieten mit einem hohen bis sehr hohen Fremdwasseranteil stark beeinflusst (VGEP AVH, 2022). Das gereinigte Abwasser wird in den Zürichsee geleitet.

In den Kapiteln 3 – 8 werden die ausgewerteten Betriebsdaten grafisch dargestellt. Folgende Ziele werden mit der Betriebsdatenauswertung verfolgt:

- Bestimmung der wichtigsten Kenngrössen
- Vergleich mit Kennzahlen und Grenzwerten
- Erkennen von Trends über einen Zeitraum von 2018 bis 2022
- Qualitätssicherung der Daten

1.1 Abwasser

Die folgenden Messwerte sind 85%-Quantile, das bedeutet, dass 85% aller Werte kleiner als dieser Wert sind. Die ARA Höfe ist auf das 85%-Quantil ausgelegt worden und ist somit der geeignete Vergleichswert.

Die Reinigungsleistung der ARA Höfe ist über die untersuchten Parameter gut. Die Abflusskonzentrationen und die Eliminationsgrade konnten meistens erfüllt und übertroffen werden. Ab September bis Mitte November herrschte eine akute Mangellage an Fällmitteln in der ganzen Schweiz und dem angrenzenden Ausland. Die Beschaffung von Eisen-(III)-salzlösung während 2.5 Monaten war für den Abwasserverband Höfe nicht mehr möglich. Nach der Ankündigung des Lieferunterbruchs wurde die Dosiermenge des noch vorhandenen Fällmittels gedrosselt, damit der vorhandene Lagervorrat noch für mehrere Wochen ausreichte. Der Lieferant beschaffte ein Ersatzprodukt, leider nur eine Eisen-(II)-salzlösung. Mit der Eisen-(II)-salzlösung konnte die verschärfte Einleitbedingung von 0.2 mg/l P tot., trotz 3.5-fach höherer Dosierung in den Rücklaufschlamm, knapp nicht mehr eingehalten werden. Die zulässigen Abweichungen der einzelnen Parameter sind im Kapitel 3.1 zusammengefasst.

Die aktuelle Auslastung der ARA beläuft sich auf rund 36'100 EW_{CSB}, dieser ist im Vergleich zu 2021 um rund 2.9% gesunken. Verglichen mit den Messwerten seit 2018, nahm die CSB-Fracht im Jahr 2022 mit 4'334 kg/d den dritthöchsten Wert an. Die Frachtabnahme kann möglicherweise auf die Rückkehr der Arbeitnehmenden an den Arbeitsplatz zurückgeführt werden (Kapitel 4.1.1).

Die Phosphorfracht nahm im Vergleich zum Vorjahr um 5.0 % auf rund 53.1 kg/d ab. Die Eliminationsrate war auf Grund der Fällmittel Mangellage weniger hoch als im Jahr 2021, im Mittel 96.6%. Die Abflusskonzentration lag im Jahr 2022 zu 89% unter dem Grenzwert, es wurden 14 Überschreitung verzeichnet (Kapitel 4.1.4).

Die Ammoniumbelastung blieb im Vergleich zum Vorjahr bei 244 kg/d praktisch gleich. Der Grenzwert NH₄-N von 2 mg/l im Abfluss der ARA wies 24 von den maximal 25 zulässigen Überschreitungen auf (Kapitel 4.1.7). Bei den Überschreitungen des Grenzwerts sind die Wintermonate auffallend (anfangs Dezember bis Mitte Februar). Die Abwassertemperaturen sind zwischen 10-13°C und die Aktivität der nitrifizierenden Bakterien ist tendenziell gehemmt. Dies hat einen negativen Einfluss auf die Nitrifikationsleistung der ARA Höfe. Diese Problematik sollte bei einer Hybridwirbelbett-Biologie vermindert auftreten, da die Nitrifikation auf dem Trägermaterial stattfinden sollte. Da seit Jahren, trotz verschiedener Massnahmen, keine Besserung der Situation eintritt, wurde das Wasserforschungsinstitut EAWAG mit einer wissenschaftlichen Studie beauftragt. Erste Resultate werden im Juli 2023 erwartet.

Die Nitritkonzentration im Abfluss lag stets unter dem Richtwert von 0.3 mg/l (Kapitel 4.1.6). Die Reinigungsleistung bezüglich der gesamten Stickstofffracht auf der ARA Höfe, berechnet auf das

85-%-Quantil, blieb im Vergleich mit dem Vorjahr auf tiefem Niveau stabil. Die Eliminationsrate lag über das Jahr im Durchschnitt bei rund 45 % (Kapitel 4.1.8). Der Stickstoffeintrag in den Zürichsee erfolgte grösstenteils in Form von Nitrat.

Während des ganzen Berichtsjahres wurde eine mögliche Massnahme umgesetzt, um die Nitrifikationsleistung auf dem Trägermaterial zu verbessern. Das Schlammalter wurde gezielt sehr tief gehalten. Der Schlammvolumenindex (SVI) schwankte zwischen 66 und 171 ml/g. Werte unter 120 ml/g sind gut. Bei zu hohem SVI ist Schlammabtrieb möglich, was sich in einer erhöhten GUS-Konzentration wiederspiegelt. Dies ist aber mit den nachgeschalteten Filtern unkritisch und zeigt sich in der GUS-Abflusskonzentration, welche im Mittel 2.0 mg/l aufwies (Kapitel 4.1.5). Im Vergleich zum Vorjahr nahm die GUS-Abflusskonzentration um 9% ab.

Die gesamte Abwassermenge im Jahr 2022 betrug rund 4'220'000 m³, 16.7 % weniger als im Vorjahr mit hohen Pegelständen im Zürichsee (Kapitel 4.2). Die Niederschlagsmenge belief sich auf rund 1138 mm/m². Die Niederschlagsmenge korreliert mit der Abwasserzuflussmenge der ARA Höfe über die Jahre 2018 – 2022. Über das Regenklärbecken auf der ARA Höfe wurden 100'000 m³ Abwasser in den See entlastet, 2.5 mal weniger als im Vorjahr.

1.2 Klärschlamm

Der Frischschlammanfall der ARA Höfe betrug im Jahr 2022 rund 23'000 m³ mit einem Trockenrückstand (TR) von 4.1 %. Der Frischschlamm wird in einer mesophilen Faulung (ca. 37 °C) anaerob zu Klärgas vergärt. Die mittlere Aufenthaltszeit in der Faulung war 19.4 Tage und ein Abbau von rund 56% des organischen Trockenrückstands (oTR) konnte erreicht werden. Die spezifische Klärgasproduktion betrug 510.5 l/kg oTR im Jahr 2022 (Kapitel 6).

Die total produzierte Klärgasmenge betrug rund 355'800 Nm³, 1.7 % weniger als im Vorjahr (Kapitel 7). Die zwei Blockheizkraftwerke (BHKW) produzierten aus dem Klärgas rund 666'900 kWh Energie (Kapitel 7.1). Dies ist auf die tiefere Schlammmenge, welcher der Schlammfaulung zugeführt wurde, zurückzuführen. Die thermische Energie der BHKW wurde primär zur Schlammerwärmung in der Faulung eingesetzt. Zusätzlich produzierte die Photovoltaikanlage rund 28'500 kWh elektrische Energie, deutlich mehr als im Vorjahr infolge des schönen Sommers. Bei dem Gesamtverbrauch der elektrischen Energie der ARA Höfe von rund 1.79 Millionen kWh im Jahr 2022, führt dies zu einer Eigenversorgung von 37.3%.

Der Hauptverbraucher der ARA Höfe sind die Gebläse der biologischen Reinigung, welche 47.7% des Gesamtverbrauchs ausmachen (Kapitel 8.2). Der zweitgrösste Verbraucher ist die mechanische Reinigung mit rund 12.5%.

Die entwässerte Klärschlammmenge belief sich auf rund 1308 t mit einem Trockenrückstand von 33.4 % (Kapitel 9.1). Die entsorgte Fracht blieb in den Jahren 2018-2022 in etwa gleich.

1.3 Weitere Bemerkungen

Relevante Ereignisse auf der ARA Höfe im Jahr 2022:

- 12. Januar: Revision Gasdruckerhöhungsgebläse
- 12. bis 14. Februar: Entleerung VKB 1, Ersatz Schieber Primärschlammschacht 1
- 20 bis 22. April: Entleerung VKB 2, Ersatz Schieber Primärschlammschacht 2
- 8. Juni: PLS Ausfall Server 1+2
- 27. bis 30. Juni: BB4 ausser Betrieb, Ersatz Rohrbelüfter
- 7. und 8. Juli: Ersatz Ketten Feinrechen 1 + 2
- 11. bis 14. Juli: BB3 ausser Betrieb, Ersatz Rohrbelüfter
- 11. August: Leistungsschalterkontrolle an diversen Anlageteilen
- 22. bis 25. August: BB2 ausser Betrieb, Ersatz Rohrbelüfter
- 29. August bis 1. September: BB1 ausser Betrieb, Ersatz Rohrbelüfter

- 2. September: Dosierung von FeCISO4 drosseln
- 5. bis 8. September: Ersatz Strömungsbeschleuniger DN-Zone 1-4
- 19. bis 22. September: NKB4 ausser Betrieb, Ersatz Gleitschienen und Gleitschuhe drehen
- 17. bis 20. Oktober: NKB3 ausser Betrieb, Ersatz Gleitschienen und Gleitschuhe drehen
- 2. November: Aktivkohlewechsel der Gasaufbereitung
- 3. November: IBN N-Analyser (Studie EAWAG)
- 9. November: Revision ÜSS-Dekanter
- 14. November: Notstromtest, Abschaltung ARA Transformator

2 Personelles

2.1 Mitarbeitende

Karin Thum Betriebsleiterin

Reto KüminStellvertreter Betriebsleiterin, KlärwerkfachmannMarcel BruhinBetriebselektriker, Klärwerkfachmann in Ausbildung

Patrick Dietiker Betriebselektriker, Klärwärter VSA

Toni Schuler Klärwärter VSA Roger Suter Klärwärter VSA

2.2 Ausbildungen

Im Jahr 2022 hat das Betriebspersonal folgende Ausbildungs- und Weiterbildungskurse besucht:

Karin Thum

- Online, VSA, Vorstellung neuer Leitfaden und Merkblatt Auto- und Transportgewerbe
- Online, Siemens, Cyberkriminalität
- Online, VSA, 3D-Simulation im Bereich Abwasser und Sonderbauwerke (Beispiel AVH)
- Online, VSA, Modul G der Richtlinie Abwasserbewirtschaftung bei Regenwetter (Beispiel AVH)
- VSA, 78. Mitgliederversammlung
- VSA, Kanalisationsforum und Schwammstadt
- Online, VSA, Spurenstoffe in der Ozonung Bildung von Transformationsprodukten und ihr Verhalten in der Nachklärung
- SINOMA, Erste Hilfe
- Arbeitssicherheit Zehnder, Schulung Arbeitssicherheit
- VSA, Forbildungskurs Fokus Stickstoff
- Online, VSA, Energie in ARA Klimapolitik und konkrete Massnahmen auf ARA
- Online, VSA, Strompreise ARA
- VSA, Weiterbildung für Klärwerkfachleute W22, Alltag auf der ARA: vom baulichen Unterhalt bis zum Gewässerschutz
- VSA CC Gewässer, Referat Fachtagung Modul G
- TFB Wildegg, Zeitmanagement und Arbeitstechnik

Reto Kümin

- VSA, Weiterbildung für Klärwerkfachleute W22, Alltag auf der ARA: vom baulichen Unterhalt bis zum Gewässerschutz
- SINOMA, Erste Hilfe
- · Arbeitssicherheit Zehnder, Schulung Arbeitssicherheit
- Arbeitssicherheit Zehnder, ERFA-Tagung

- Berner FH, Burgdorfer Abwassertag
- AWEL, Kantonale Tagung für ZH Klärwerkpersonal

Marcel Bruhin

- VSA, Fachausbildung M1, Ausbildungsstufe zum Klärwerkfachmann
- Electrosuisse Informationstagung f
 ür Betriebselektriker
- VSA, Lebenslanges Lernen, zusätzliche Ausbildungsstufe zum Klärwerkfachmann
- SINOMA, Erste Hilfe
- Arbeitssicherheit Zehnder, Schulung Arbeitssicherheit
- VSA, Fachausbildung M2, Ausbildungsstufe zum Klärwerkfachmann

Patrick Dietiker

- Electrosuisse Informationstagung f
 ür Betriebselektriker
- SINOMA, Erste Hilfe
- Arbeitssicherheit Zehnder, Schulung Arbeitssicherheit

Toni Schuler

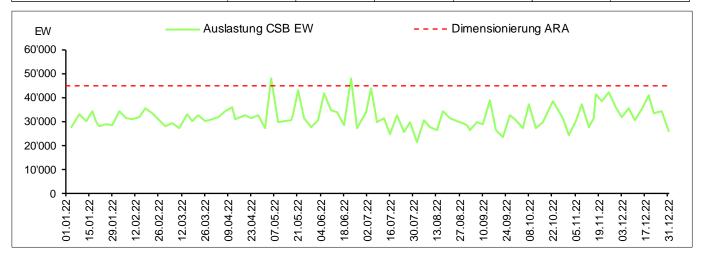
- SINOMA, Erste Hilfe
- Arbeitssicherheit Zehnder, Schulung Arbeitssicherheit
- Egger Pumpen, Instandhaltungsseminar für Kreiselpumpen und Regelarmaturen

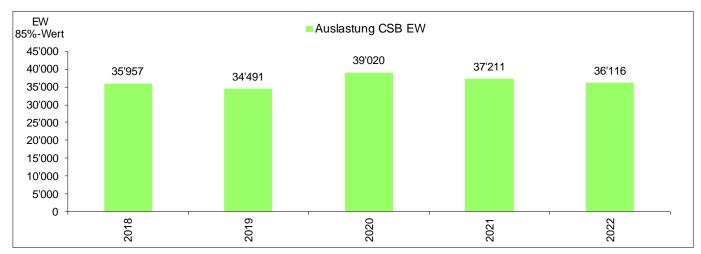
Roger Suter

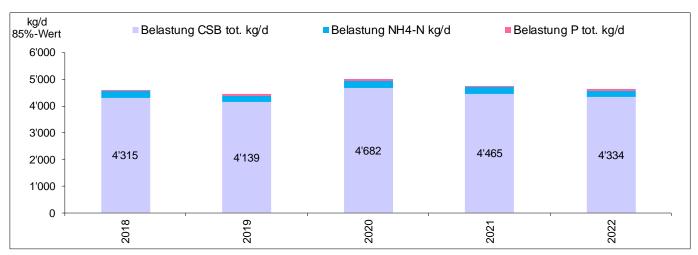
- SINOMA, Erste Hilfe
- Arbeitssicherheit Zehnder, Schulung Arbeitssicherheit

3 Abwasserreinigung

3.1 Gesamtbeurteilung

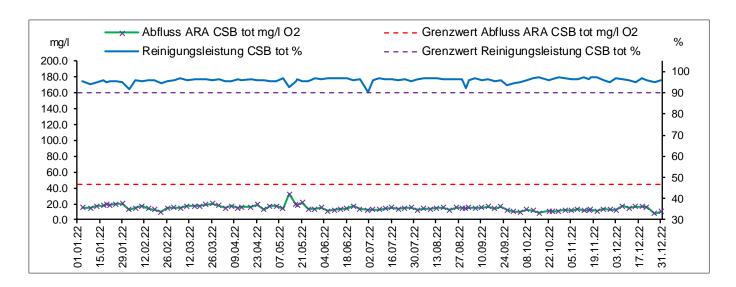

Parameter		Anforderung	Mittel	Anzahl Proben	Anzahl Über Zulässig	schreitungen Tatsächlich
CSB tot.	mg/l	<= 45.00	14.70	95	8	0
Chemischer Sauerstoffbedarf	%	>= 90.00	95.90	95	8	0
BSB5	mg/l	<= 10.00	3.00	38	4	0
Biochemischer Sauerstoffbedarf	%	>= 90.00	98.60	38	4	0
DOC	mg/l	<= 10.00	6.00	95	8	0
Gelöster organischer Kohlenstoff	%	>= 85.00	93.70	95	8	0
P tot.	mg/l	<= 0.20	0.13	130	11	14
Phosphor total	%	>= 80.00	96.60	95	8	3
GUS Gesamte ungelöste Stoffe	mg/l	<= 5.00	2.00	95	8	0
NH4-N	mg/l	<= 2.00	0.67	356	25	24
Ammonium	%	>= 90.00	96.70	94	8	8
NO2-N Nitrit	mg/l	<= 0.30	0.04	127	11	0
Durchsichtigkeit	cm	>= 30.00	65.00	95	8	0

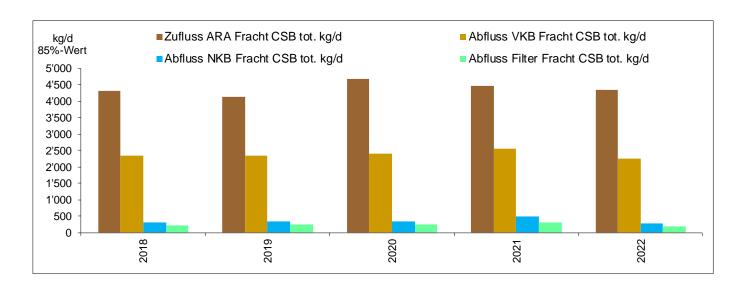

Auszug aus der Gewässerschutzverordnung:


Anzahl der jährlichen Probenahmen	Anzahl der zulässigen Abweichungen	Anzahl der jährlichen Probenahmen	Anzahl der zulässigen Abweichungen
4-7	1	172-187	14
8-16	2	188-203	15
17-28	3	204-219	16
29-40	4	220-235	17
41-53	5	236-251	18
54-67	6	252-268	19
68-81	7	269-284	20
82-95	8	285-300	21
96-110	9	301-317	22
111-125	10	318-334	23
126-140	11	335-350	24
141-155	12	351-365	25
156-171	13		

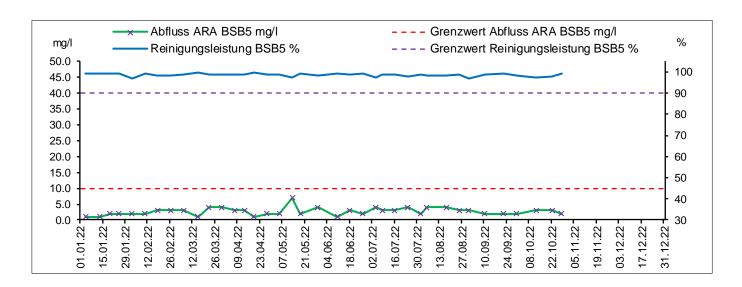
3.2 Belastungen ARA

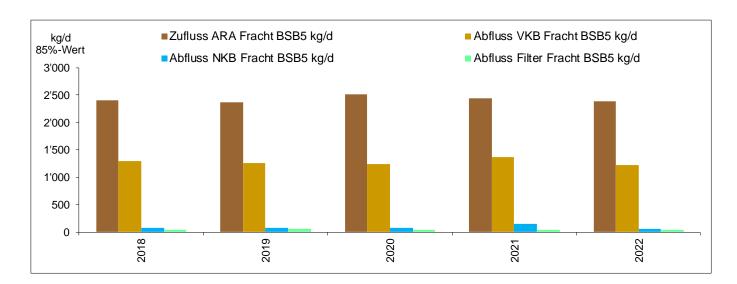
	Einheit	2018	2019	2020	2021	2022
Auslastung ARA CSB (85%)	EW	35'957	34'491	39'020	37'211	36'116
Belastung ARA CSB tot. (85%)	kg/d	4'315	4'139	4'682	4'465	4'334
Belastung ARA NH4-N (85%)	kg/d	239	250	266	246	244
Belastung ARA P tot. (85%)	kg/d	55.0	52.2	54.4	55.9	53.1



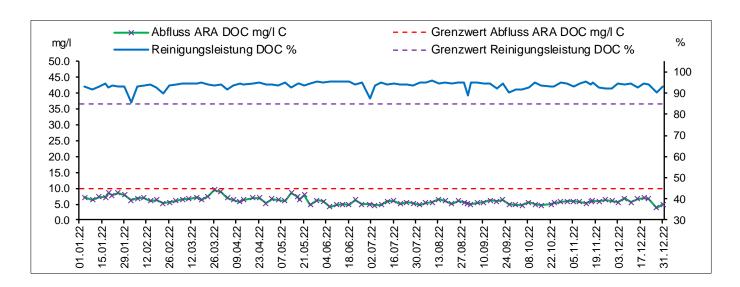


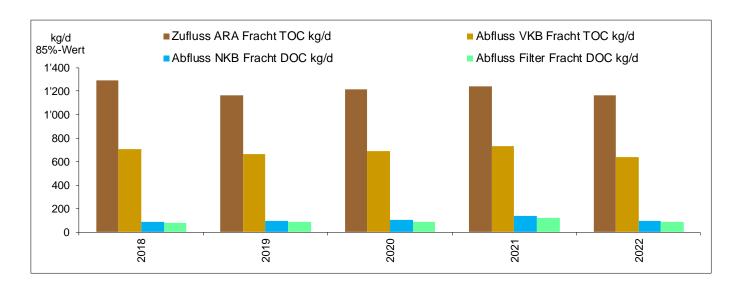
4 Grafiken Einleitbedingungen


4.1.1 Chemischer Sauerstoffbedarf (CSB tot.)

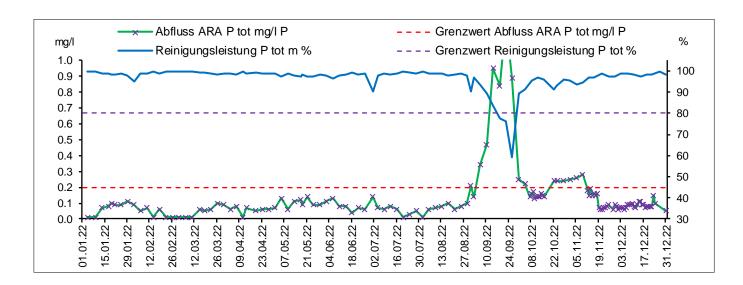


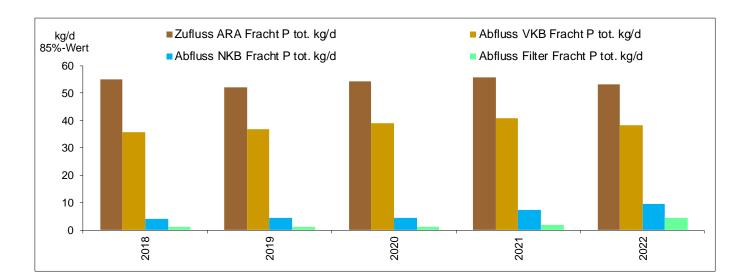
Parameter		Anforderung	Mittel	Anzahl	Anzahl Über	schreitungen
				Proben	Zulässig	Tatsächlich
CSB tot.	mg/l	<= 45.00	14.70	95	8	0
Chemischer Sauerstoffbedarf	%	>= 90.00	95.90	95	8	0


4.1.2 Biochemischer Sauerstoffbedarf in 5 Tagen (BSB5)

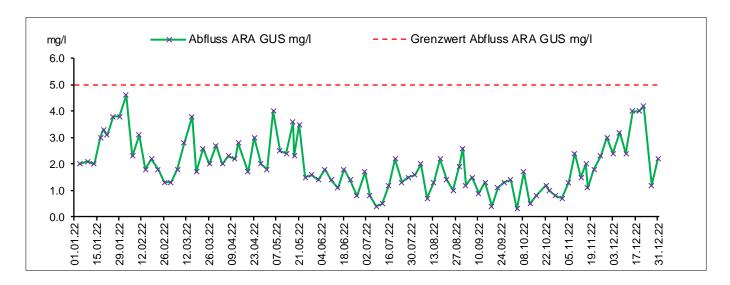


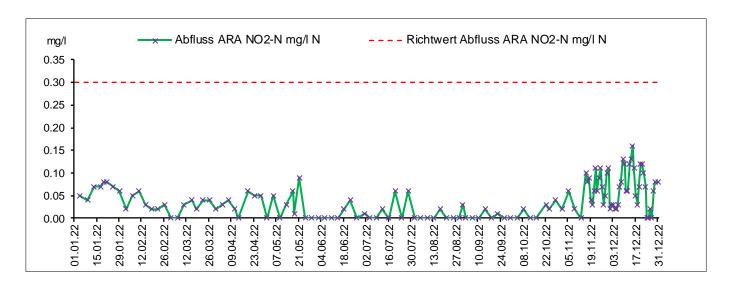
Parameter		Anforderung	Mittel	Anzahl	Anzahl Über	schreitungen
				Proben	Zulässig	Tatsächlich
BSB5	mg/l	<= 10.00	3.00	38	4	0
Biochemischer Sauerstoffbedarf	%	>= 90.00	98.60	38	4	0


4.1.3 Organischer Kohlenstoff (DOC)

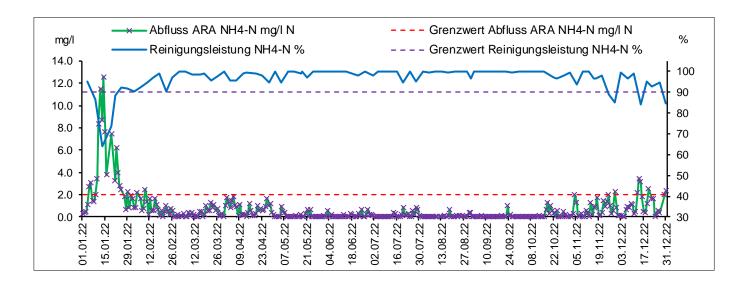


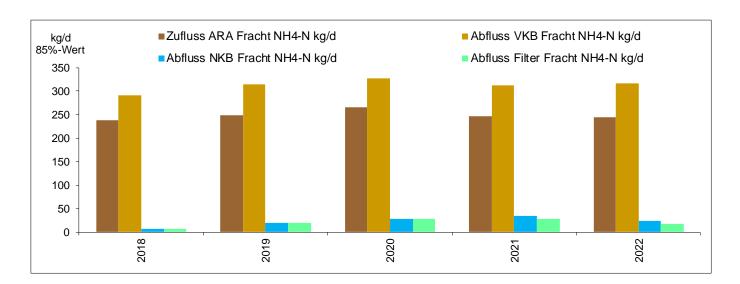
Parameter		Anforderung	Mittel	Anzahl	Anzahl Über	schreitungen
				Proben	Zulässig	Tatsächlich
DOC	mg/l	<= 10.00	6.00	95	8	0
Gelöster organischer Kohlenstoff	%	>= 85.00	93.70	95	8	0


4.1.4 Phosphor gesamt (P tot.)

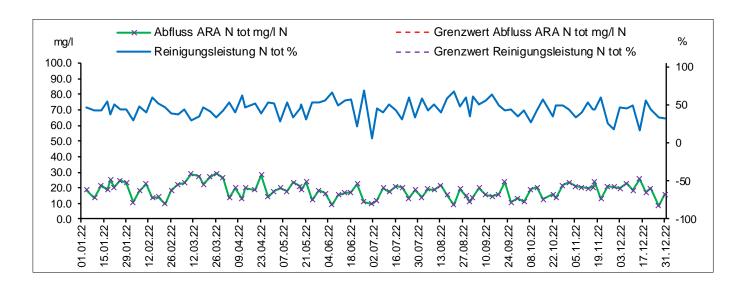

Parameter		Anforderung	Mittel	Anzahl	Anzahl Über	schreitungen
				Proben	Zulässig	Tatsächlich
P tot.	mg/l	<= 0.20	0.13	130	11	14
Phosphor total	%	>= 80.00	96.60	95	8	3

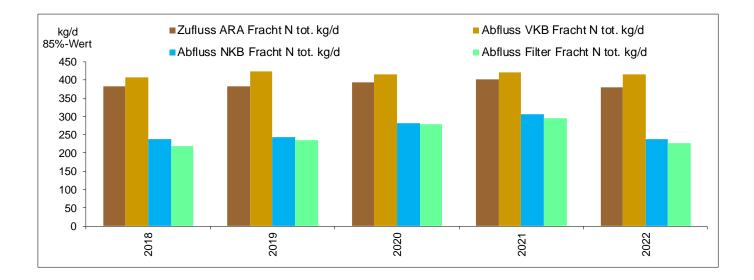
4.1.5 Gesamte ungelöste Stoffe (GUS)

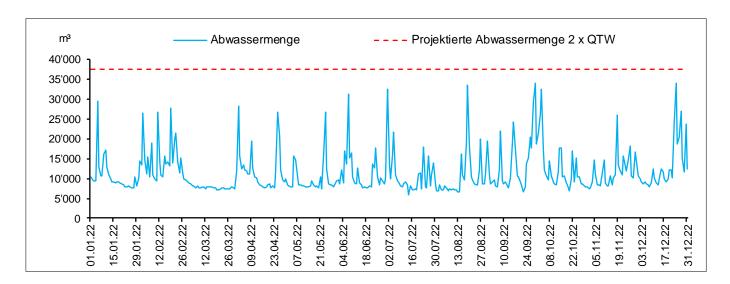

Parameter	Anford		Mittel	Anzahl Proben	Anzahl Über Zulässig	schreitungen Tatsächlich
GUS Gesamte ungelöste Stoffe	mg/l	<= 5.00	2.00	95	8	0

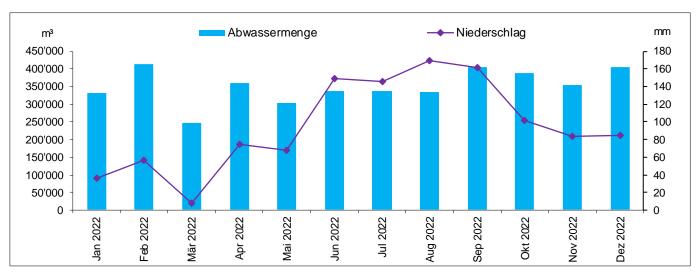

4.1.6 Nitrit (NO2-N)

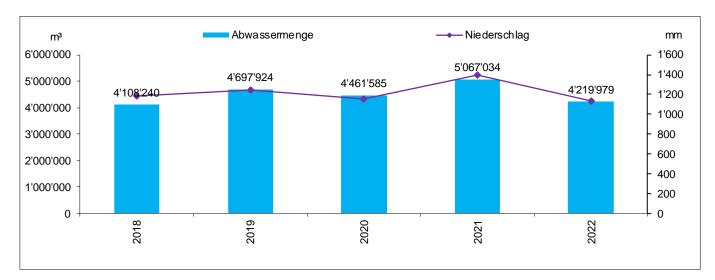
Parameter	Anforderung Mittel Anzahl Proben		-	Anzahl Übers Zulässig	schreitungen Tatsächlich	
				FIODEII	Zuiassig	TalSacillicii
NO2-N Nitrit	mg/l	<= 0.30	0.04	127	11	0

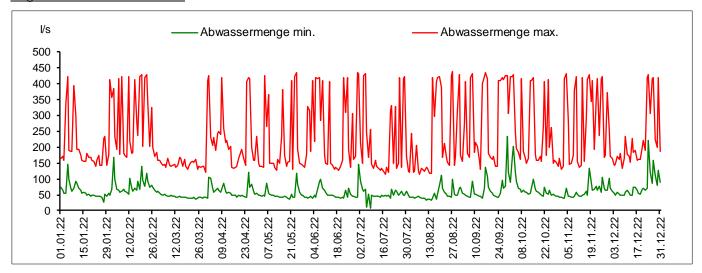

4.1.7 Ammonium (NH4-N)

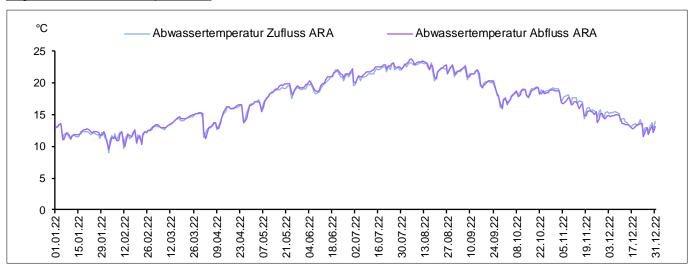


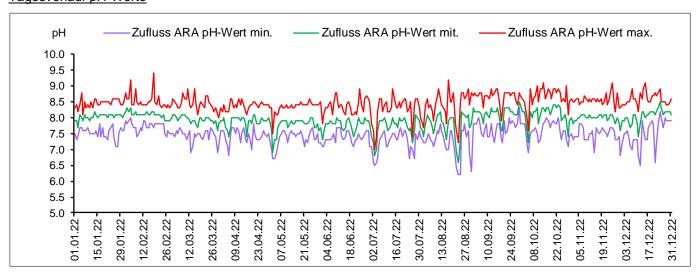

Parameter		Anforderung	Mittel	Anzahl	Anzahl Über	schreitungen
				Proben	Zulässig	Tatsächlich
NH4-N	mg/l	<= 2.00	0.67	356	25	24
Ammonium	%	>= 90.00	96.70	94	8	8


4.1.8 Stickstoff gesamt (N tot.)

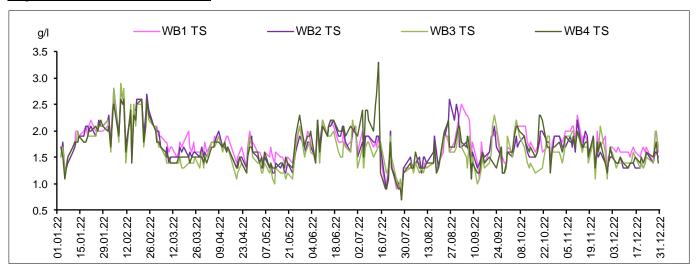



4.2 Abwassermengen / Abwassertemperaturen

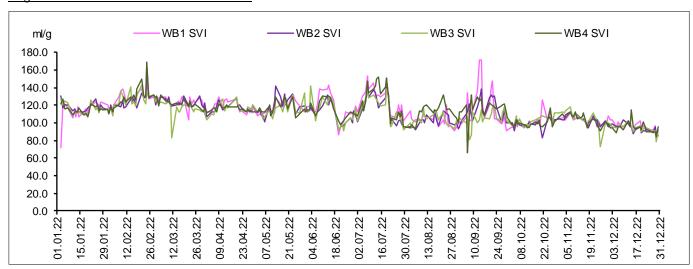



Tagesverlauf Q min. / Q max.

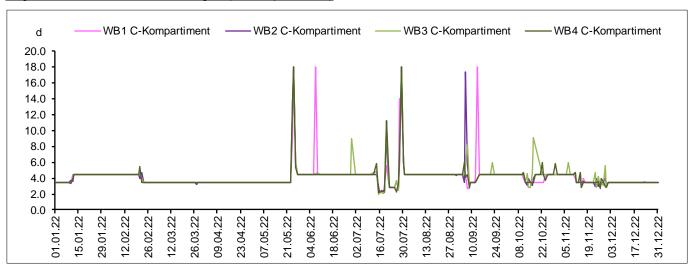
Tagesverlauf Wassertemperaturen



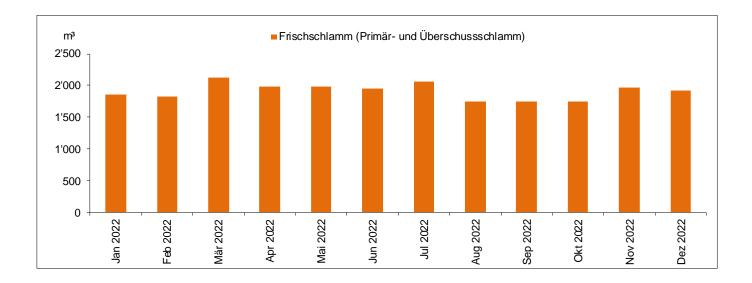
Tagesverlauf pH-Werte

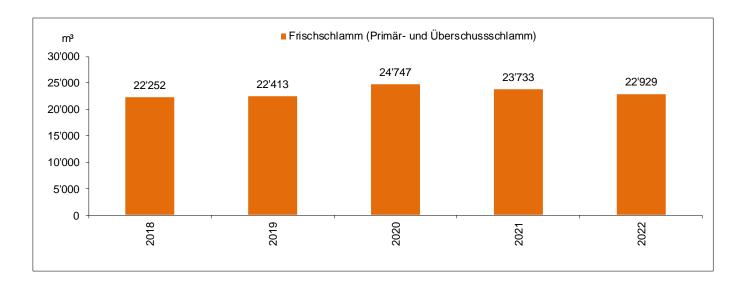


5 Biologie WB

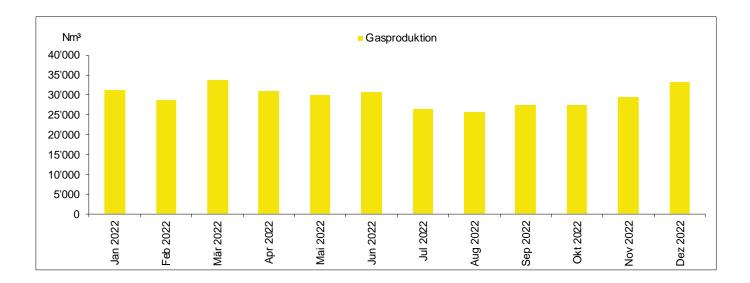

Tagesverlauf Trockensubstanz TS

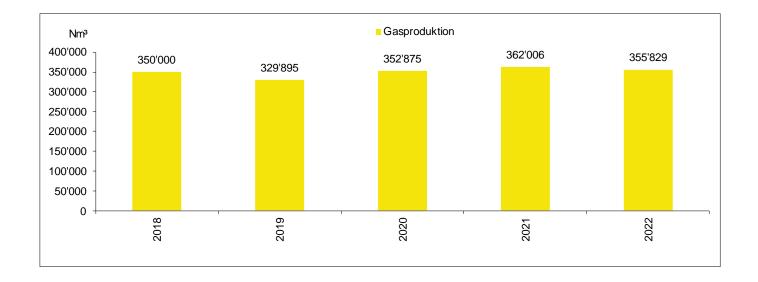
Tagesverlauf Schlammvolumenindex SVI




Tagesverlauf Schlammalter in Tagen (C-Kompartiment)

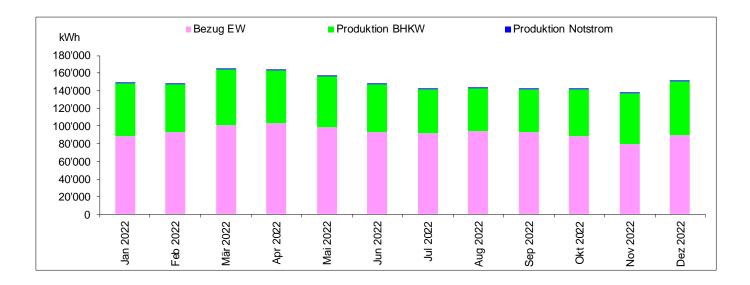
6 Schlammbehandlung

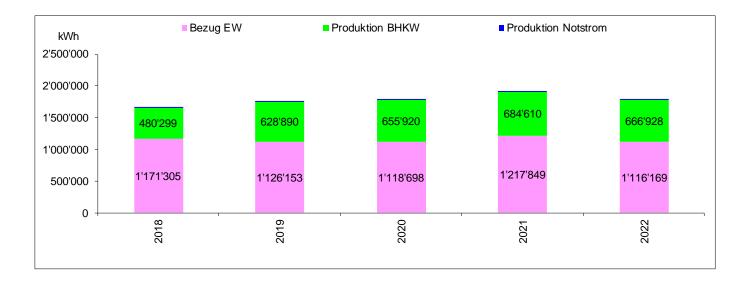

	Einheit	2018	2019	2020	2021	2022
Frischschlamm (PS + ÜSS)	m³	22'252	22'413	24'738	23'733	22'929
Frischschlamm (PS + ÜSS) TR	%	4.2	4.3	4.0	4.4	4.1
Frischschlamm (PS + ÜSS) Fracht TR	t TR	2.553	2.629	2.743	2.859	2.557
Frischschlamm (PS + ÜSS) Fracht oTR	t oTR	1.829	1.907	2.020	2.062	1.937
Aufenthaltszeit Faulraum	d	20.7	20.2	18.0	18.9	19.4
Abbau oTR im Faulraum	%	64.1	55.7	54.3	57.5	56.0
Spezifische Klärgasproduktion	l/kg oTR	552.5	490.8	495.3	493.2	510.5



7 Gashaushalt

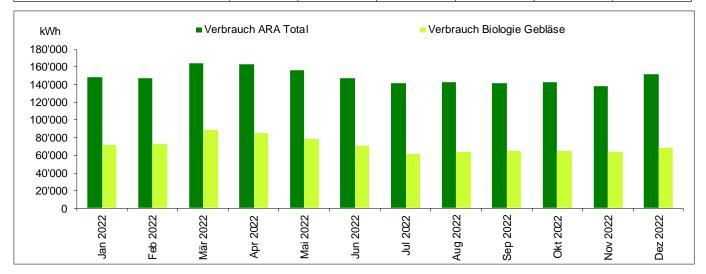
	Einheit	2018	2019	2020	2021	2022
Gasverbrauch BHKW	Nm³	285'828	328'949	343'606	359'108	352'802
Gasverbrauch Fackel	Nm³	64'172	946	9'269	2'898	3'027
Gasproduktion Total	Nm³	350'000	329'895	352'875	362'006	355'829

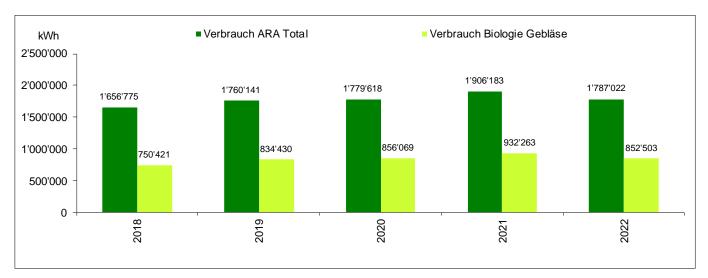




8 Energiebilanz

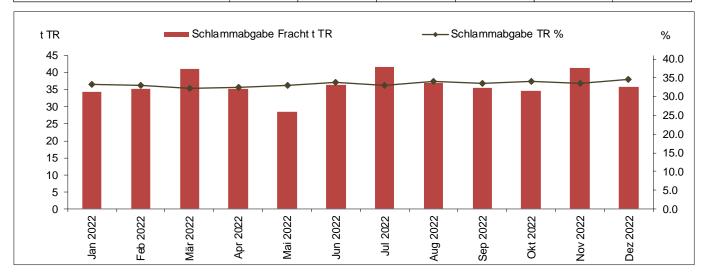
8.1 Energie ARA Total

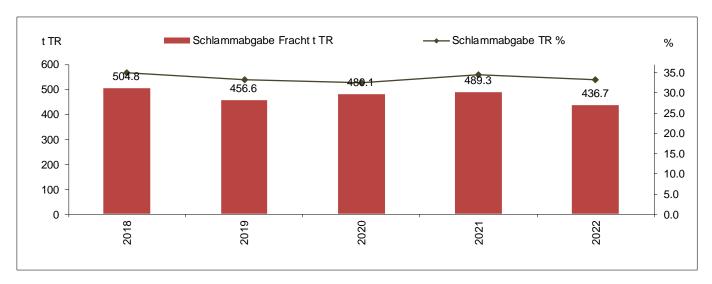

	Einheit	2018	2019	2020	2021	2022
El. Energie Bezug EW	kWh	1'171'305	1'126'153	1'118'698	1'217'849	1'116'169
El. Energie Produktion BHKW	kWh	480'299	628'890	655'920	684'610	666'928
El. Energie Produktion Notstrom	kWh	5'171	5'098	5'000	3'724	3'925
El. Energie Verbrauch ARA Total	kWh	1'656'775	1'760'141	1'779'618	1'906'183	1'787'022
El. Energie Produktion PV	kWh	28'946	28'359	28'968	25'688	28'527



8.2 Energie UV's

	Einheit	2018	2019	2020	2021	2022
El. Energie ARA Total	kWh	1'656'775	1'760'141	1'779'618	1'906'183	1'787'022
El. Energie Biologie Gebläse Total	kWh	750'421	834'430	856'069	932'263	852'503
El. Energie Überschussschlamm	kWh	9'521	9'757	10'193	14'412	13'030
El. Energie RLS Pumpen	kWh	46'893	49'381	50'306	52'681	47'699
El. Energie BB, Rührwerke, C-Abbau	kWh	60'335	59'867	59'742	59'634	62'584
El. Energie NKB, Schwimmschlamm	kWh	10'574	10'668	10'876	10'672	10'999
El. Energie Filtration Total UW04	kWh	127'850	135'773	132'526	135'935	130'580
El. Energie Regenbecken	kWh	3'740	3'862	3'985	4'487	4'269
El. Energie Mech. Reinigung	kWh	252'809	245'344	231'973	252'713	223'019
El. Energie Schlammentwässerung	kWh	49'630	52'335	58'940	47'831	46'790
El. Energie Schlammanlage	kWh		135'450	139'908	136'218	133'879
El. Energie Dekanter ÜSS	kWh	84'742	88'755	90'941	124'054	115'521





9 Entsorgung

9.1 Entsorgung Klärschlamm

	Einheit	2018	2019	2020	2021	2022
Abgabe Schlamm Entwässert	t	1'450.7	1'366.9	1'475.2	1'411.4	1'308.4
Abgabe Schlamm Entwässert TR	%	35.0	33.4	32.5	34.6	33.4
Abgabe Schlamm Entwässert Fracht	t TR	504.8	456.6	480.1	489.3	436.7

9.2 Entsorgung Diverses

	Einheit	2018	2019	2020	2021	2022
Entsorgung Rechen-/ Strainpressgut	m³	199.2	194.4	212.8	222.4	191.2
Entsorgung Sandfanggut	m³	5.7		6.0	6.0	6.0

10 Fachbegriffe

EW Einwohnerwert

EGW Einwohnergleichwert

TW Trockenwetter RW Regenwetter

TS Trockensubstanz (Filtermethode)

TR Trockenrückstand (Eindampfmethode)

ARA Abwasserreinigungsanlage

VKB Vorklärbecken NKB Nachklärbecken

BSB5 Biochemischer Sauerstoffbedarf in 5 Tagen

CSB Chemischer Sauerstoffbedarf
TOC Totaler organischer Kohlenstoff
DOC Gelöster organischer Kohlenstoff

GUS Gesamt ungelöste Stoffe (Filter 0.45 µm Porenweite)

NH4-N Ammonium – Stickstoff N tot. Stickstoff gesamt / total

NO3-N Nitrat – Stickstoff NO2-N Nitrit – Stickstoff

P tot. Phosphor gesamt / total